## 10 ЛЕКЦИЯ: ПРИНЦИПИАЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ КОНТРОЛЯ И АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ

Схемы технологического контроля состоят из разомкнутых каналов, по которым информация о ходе технологического процесса поступает в пункт управления объектом.

*Схемы автоматического регулирования* отражают конкретное решение задачи автоматического регулирования.

Для автоматизации технологических процессов, как правило, используются приборы с унифицированными сигналами, что позволяет сопрягать элементы схемы без дополнительного согласования между ними.

Простейший канал технологического контроля состоит из типовых серийных измерительных приборов и преобразователей.

В электрических схемах автоматического регулирования изображают все элементы системы автоматизации, с помощью которых осуществляется автоматическое регулирование одного или нескольких технологических параметров: датчики и первичные приборы, преобразующие измеряемый параметр в электрический сигнал, регулирующие приборы, задатчики, усилители преобразователи, модули, осуществляющие логические операции, контроллеры, переключатели вида управления (автоматическое, ручное, отключено).

Все элементы принципиальных электрических схем технологического контроля и автоматического регулирования показываются с помощью условных графических обозначений.

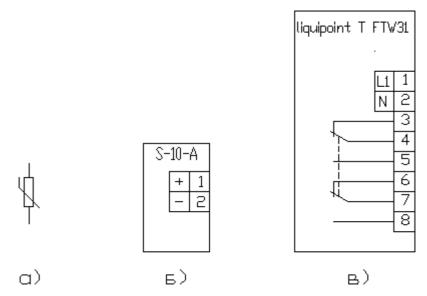



Рисунок 10.1 – Примеры изображения датчиков на электрических принципиальных схемах контроля и автоматического регулирования: а) термометр сопротивления Pt100, б) однопредельный цифровой датчик давления Wika S-10-A, в) сигнализатор уровня liquipoint T FTW31

При построении схем приходится допускать много условностей из-за отсутствия стандартных символов, обозначающих сложные

комбинированные приборы, регулирующие устройства и исполнительные Часто проектные организации разрабатывают различные способы условного обозначения индивидуальные этих средств многообразие автоматизации. Однако, несмотря на встречающихся изображений можно выявить некоторые общие принципы их построения:

А) датчики (первичные преобразователи) в схемах изображают либо с помощью обозначений, принятых в электрических схемах, либо с помощью прямоугольников произвольных размеров, внутри которых могут быть изображены резисторы, катушки индуктивности и другие элементы, имитирующие принцип действия датчика или первичного преобразователя (рисунок 10.1).

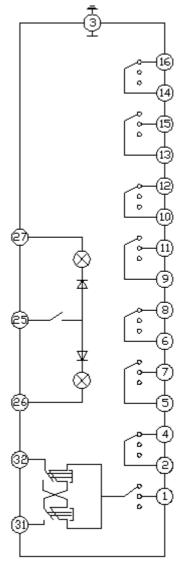



Рисунок 10.2 – Условное графическое обозначение БУ21 на схемах электрических принципиальных

Б) Сложные комбинированные приборы и регулирующие устройства, как правило, изображаются только в виде прямоугольников с пронумерованными в соответствии с заводской маркировкой внешними

зажимами. Принципиальные электрические схемы в виду их сложности внутри прямоугольников не показывают. Иногда для пояснения общего принципа действия схемы внутри прямоугольников могут быть частично или упрощенно показаны внутренние схемы магнитных усилителей, блоков управления и других элементов схемы (рисунок 10.2).

В остальных случаях в прямоугольниках показывают только колодки зажимов, штепсельные разъемы и обозначают тип средств автоматизации (рисунок 10.3).

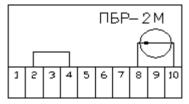



Рисунок 10.3 – Условное графическое обозначение пускателя бесконтактного реверсивного ПБР-2М на схемах электрических принципиальных

В) Электрические схемы исполнительных механизмов в схемах автоматического регулирования изображают в развернутом или упрощенном виде (рисунок 10.4).

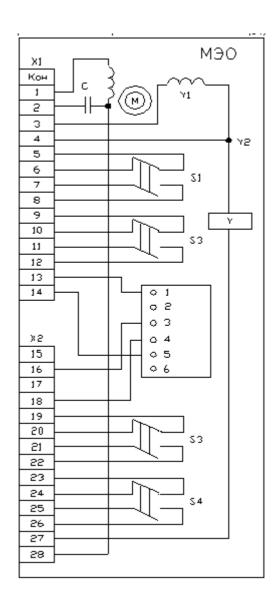



Рисунок 10.4 — Условное графическое обозначение исполнительного механизма МЭО 16/25-0,25 с датчиком положения выходного вала двигателя БСПТ-10 с токовым выходом

Схемы автоматического регулирования наиболее сложны, поэтому, прежде чем приступить к их детальному разбору, необходимо тщательно изучить пояснительную записку и функциональные схемы автоматизации.

Основанием для разработки принципиальных электрических схем контроля и автоматического регулирования является структурная схема, показывающая полный состав и связи между элементами схемы. Структурная схема приводится обычно на TOM же листе где И принципиальная схема.

Поскольку в системах автоматизации используются стандартные приборы, то применяются типовые схемы включения. Тогда задача составления принципиальной схемы сводится к изображению на чертеже ее элементов, а также необходимой аппаратуры питания, защиты, ручного управления, сигнализации и электрических линий связи между всеми этими

элементами. Линии связи на электрических принципиальных схемах изображаются, как правило, в многолинейном изображении.

Позиционные обозначения приборов и средств автоматизации сохраняют такими, какие они на функциональной схеме. Остальным элементам схемы присваивают обозначения, принятые в принципиальных электрических схемах (рисунок 10.5).




Рисунок 10.5 — Фрагмент чертежа принципиальной электрической схемы контроля и автоматического регулирования

Каждую линию связи на электрической принципиальной схеме маркируют.

Схему оформляют в виде чертежа стандартного формата. На первом листе чертежа над основной надписью по ее ширине (или отдельным текстовым документом) располагают таблицу перечня элементов (рисунок 10.6).

| Поз.          | Наименование                                        | Коль | Примечание                  |
|---------------|-----------------------------------------------------|------|-----------------------------|
| 1a, 2a        | Сигнализатор эровня liquipoint T FTW31,             | N    | 'Endress+Hauser'            |
|               | двыхстержневой зонд L=200мм, влок электроники FEV54 |      |                             |
| 1s, 2s        | Блок питания DRA 120-24                             | 2    | 5 A                         |
| За            | Термометр сопротивления Pt100 7MC8015-5BC100-1AF0   | 1    |                             |
| 3в            | Измерительный преобразователь Sitrons TK 7NG3120    | 1    |                             |
| Зв.           | Влок питания/развязки Sitrons I 7NG4123             | 1    | 4-20 mA/4-20mA              |
| <b>4</b> E    | Блок питания ИПД-24-2 DIN                           | 1    |                             |
| 4a            | Однопредельный цифровой датчик давл. Wlka S-10      | 1    |                             |
| Зд            | Прямоходный односедельный клапан                    | 1    |                             |
|               | Samson типа 3213 Ду=20                              |      |                             |
| 3r            | Электрическия сервопривод Samson типа 5825          | 1    | Датчики положения<br>4…20мА |
| A-1           | Контроллер АДАМ 5510 в составе                      | 1    | Вазовый влок                |
| AI1           | Модыль аналогового ввода АДАМ 5017                  | 1    |                             |
| DI1           | Модыль дискретного ввода АДАМ 5052                  | 1    |                             |
| DO1           | Выходной релейный модэль ADAM 5068                  | 1    |                             |
| $\overline{}$ | -                                                   |      |                             |

Рисунок 10.6 – Фрагмент перечня элементов принципиальной схемы на рисунке 10.5